“MEDIDA DE LA FORIA EN VISIÓN PRÓXIMA:
COMPARACIÓN ENTRE POSICIÓN PRIMARIA DE
MIRADA Y POSICIÓN INFERIOR”

Por
CÉSAR GUTIÉRREZ GUTIÉRREZ

MASTER en OPTOMETRÍA y ENTRENAMIENTO VISUAL

Junio de 2002
A mis padres; por darme la oportunidad de seguir creciendo en el maravilloso mundo de la visión.

“Si siempre haces lo que siempre has hecho, nunca llegarás más lejos de donde siempre has llegado“.
Agradecimientos

En primer lugar, agradecer a Beatriz Nácher Oviedo, tutora de este trabajo, todos sus consejos y sugerencias a la hora de abordar el presente estudio. Gracias también por todo el préstamo de material, libros y apuntes.

A Jesús Ramírez Merchán por su imprescindible aportación en el terreno estadístico y por compartir sus inquietudes científicas conmigo.

A mis compañeros de clase: Belén, Diana, Cristina, Álvaro, Isabel, Estela, Alicia, Edurne, Gloria, Pilar, Laura, Tula, Rocío, Sal.lus, y Paco por su colaboración en el estudio.

A los pacientes que formaron parte de la muestra del estudio. Sin ellos, no habría trabajo.

A Alicia, Belén, Tula y Sara por su participación en las “sesiones fotográficas”:

A nuestra secretaria en el COI: Mari Jose. Eres única. Gracias por tu amabilidad y simpatía.

Gracias al resto del profesorado del Centro de Optometría Internacional por el año que hemos pasado juntos.
ÍNDICE

1. **INTRODUCCIÓN** .. 1
2. **HIPÓTESIS Y OBJETIVOS.** .. 4
3. **BASE TEÓRICA** ... 6
 3.1. Ventajas de tener un órgano visual doble .. 7
 3.2. Condiciones para la existencia de visión binocular ... 9
 3.3. Signos y síntomas típicos asociados al sistema acomodativo-vergencial 16
 3.3.1. Criterios de Percival, Sheard y Morgan ... 17
 3.4. Evaluación de la magnitud y dirección de la heteroforia .. 20
 3.4.1. Medida de la foria utilizando el cover test ... 21
 3.4.2. Medida de la foria utilizando la técnica de Von Graefe ... 22
 3.4.3. Medida de la foria utilizando la varilla de Maddox .. 24
 3.5. Disparidad de fijación .. 25
 3.6. Posición primaria y posición inferior de mirada: músculos implicados 27
4. **MUESTRA, MATERIAL Y MÉTODOS** .. 30
 4.1. Muestra ... 31
 4.1.1. Características personales .. 31
 4.1.2. Características visuales .. 31
 4.2. Material ... 33
 4.2.1. Instrumental de gestión (fichas) .. 33
 4.2.2. Instrumental de evaluación (aparatos) .. 33
 4.2.3. Instrumental estadístico (programa) .. 35
 4.3. Métodos .. 36
 4.3.1. Selección de la muestra ... 36
 4.3.2. Recopilación de datos / Test de evaluación .. 36
 4.3.2.1. Orden de las pruebas .. 36
 4.3.2.2. Consideraciones acerca de la utilización de prismas en la medida del valor fórico 39
 4.3.2.3. Realización de las pruebas ... 42
 4.3.3. Método estadístico ... 52
5. **RESULTADOS** ... 53
6. **DISCUSIÓN** ... 58
7. **CONCLUSIÓN** ... 65
8. **ANEXOS** .. 68
9. **BIBLIOGRAFÍA** .. 78
1. Introducción
Habitualmente, todas las pruebas de visión próxima que se realizan en el gabinete (medida de la foria, vergencia fusional positiva y negativa, ARN, ARP, cilíndros cruzados, etc...) son valoradas en posición primaria de mirada.
Además, la distancia a la que se sitúa el test suele estar estandarizada a 40 cms salvo excepciones (p.ej. en amplitud de acomodación: 33 cms).

Las normas que se han establecido para las pruebas en visión próxima se refieren a valores tomados en posición primaria de mirada.

Cuando atendemos a un paciente, se valoran los resultados de las pruebas y, comparándolas entre sí además de con las normas para dichos test en visión próxima, los optometristas solemos hacer un diagnóstico acerca de cómo trabaja el sistema visual del paciente a esta distancia.

Ahora bien, en la vida cotidiana, cuando una persona realiza una tarea visual en visión próxima sus ojos suelen estar en posición inferior de mirada y no en posición primaria.

Ejemplos claros son la lectura prolongada o cuando se realiza alguna manualidad como por ejemplo coser, (todo aquello que sea sujetado por las manos se suele situar por debajo del plano horizontal que pasa por los centros de rotación de los ojos y que es paralelo al suelo).

Pero no sólo se adopta esta posición para situaciones en las que se requiere la utilización de las manos sino que cuando trabajamos en una mesa, tanto para leer como para escribir (u otros) estamos trabajando en un plano inferior al plano paralelo al suelo que pasa por el centro de rotación de ambos ojos.

La única actividad cotidiana en visión próxima que se realiza en posición primaria de mirada es el trabajo con ordenador aunque hay que hacer algunas matizaciones:
- La distancia al monitor suele ser superior a 40 cms.
- En usuarios que no saben mecanografía es común mirar al teclado mientras se escribe con lo cual sus ojos adoptan en ese momento la posición inferior de mirada.
- Además, últimamente se tiende a situar los monitores por debajo del plano horizontal visual con lo que de nuevo se favorece la posición inferior de mirada.

Teniendo en cuenta, como acabamos de ver, que en visión próxima se utiliza mayoritariamente la posición inferior de mirada cabe plantearse lo siguiente:

¿Por qué en el gabinete se valora el funcionamiento del sistema visual en visión próxima en posición primaria de mirada y no en posición inferior?

¿Para una misma prueba, obtenemos los mismos valores en posición primaria de mirada que en posición inferior?

Por tanto, ¿podemos tomar valores en posición primaria de mirada y extrapolárselos a la posición inferior?
2. Hipótesis y objetivos
OBJETIVOS

Habitualmente se asume que en posición inferior de mirada se obtienen valores fóricos más endo o menos exo que en posición primaria. De igual modo, en posición superior se dice que se es más exofórico o menos endofórico. Esto nos lleva a un patrón en V.

El objetivo de este estudio es comprobar este extremo. Se utilizarán para tal efecto los métodos de medida de la foria en visión próxima más utilizados en gabinete añadiendo además una variante del cover test a la que se ha llamado “cover test modificado” que será explicado con detalle más adelante.

HIPÓTESIS

La hipótesis de partida del estudio fue la siguiente:

“Los valores de la foria en visión próxima (40 cms) correspondientes a la posición inferior de mirada son menos exofóricos/más endofóricos que en posición primaria de mirada”.

3. Base teórica
De los cinco sentidos que tenemos la raza humana, el sentido de la vista es el más importante. Según la fuente que se consulte podemos atribuir al sistema visual mayor o menor porcentaje de implicación en el proceso de recepción de información pero se estima que entre un 75 y un 83% de la información total que recibimos es visual; somos unos animales fundamentalmente visuales.

Una particularidad del sistema visual es el hecho de percibir la realidad como si estuviéramos mirando por un solo ojo cuando en realidad recibimos dos imágenes de la escena: la que corresponde a la retina del ojo derecho y la correspondiente a la retina del ojo izquierdo.

Esto nos puede llevar a preguntarnos el por qué de tener dos ojos en lugar de sólo uno.

3.1. VENTAJAS DE TENER UN ÓRGANO VISUAL DOBLE:

- Ante lesiones, defectos o enfermedades de uno de los ojos, el correcto funcionamiento del otro permite que la importancia del problema sea menor. Tenemos por así decirlo “un ojo de repuesto”.

- La agudeza visual en condiciones binoculares suele ser igual o ligeramente superior que en monocular.

- En condiciones binoculares, el campo visual es mayor que en monocular como veremos más adelante. Este aumento del campo visual nos permite controlar simultáneamente un área mayor de nuestro entorno lo que
nos da mayor seguridad. Además, el hecho de que haya una zona del espacio en la que coinciden ambos campos monoculares, (zona vista por ambos ojos), nos permite contar con la visión estereoscópica, estereopsis o también llamada visión en 3 dimensiones.

La estereopsis se produce gracias a que las imágenes que recibe cada retina no son exactamente iguales sino que tienen una cierta disparidad horizontal debida a la separación que hay entre ambos ojos (distancia interpupilar). Esta disparidad es la que nos proporciona la sensación de relieve.

La estereopsis nos permite detectar modificaciones mínimas en la estructura tridimensional de la escena visual que monocularmente serían indetectables. Esto significa que el observador puede hacerse un juicio mucho más exacto de las distancias relativas y de la estructura tridimensional de los objetos que está observando que el que podría hacerse si únicamente utilizara información monocular.

- Mejora en el umbral absoluto. Esto significa que la cantidad mínima de energía luminosa necesaria para percibir sensación de luz cuando estamos en la oscuridad es un poco más baja cuando utilizamos los dos ojos que cuando estamos en condiciones de monocularidad.

- Mejora del umbral diferencial. La cantidad mínima de energía luminosa que ha de tener un test para ser visto sobre un fondo de luminancia L es menor en binocular que en monocular.

Por todo ello, puede justificarse el hecho de poseer un órgano visual doble. Sin embargo, para tener binocularidad no es suficiente con tener dos ojos sino que hay ciertas condiciones que se deben cumplir para que realmente se produzca dicha binocularidad.
3.2. - CONDICIONES PARA LA EXISTENCIA DE VISIÓN BINOCULAR

✓ integridad anatómica y dióptrica de los globos oculares: esto permitirá la formación de una imagen retiniana clara.

✓ campo visual binocular: Cuando queremos observar un objeto en condiciones monóculares, en primer lugar es necesario que se produzca una fijación sobre dicho objeto. La fóvea deberá estar alineada con el objeto que se desea fijar. A la línea que une la fóvea con el objeto se le denomina eje de proyección, eje visual o dirección principal de mirada. A esta acción se le denomina fijación.

Mientras se mantiene la fijación en dicho punto del espacio, a la vez se percibe el entorno que rodea a dicho punto aunque con menor detalle. A toda la zona del espacio que se puede percibir manteniendo invariable el punto de fijación se denomina campo visual.

Por tanto, en condiciones monóculares el campo visual que se tiene es de unos 100° en el lado temporal, 60° en el nasal, 60° en el superior y 75° en el inferior.

Si analizamos detenidamente ambos campos monóculares, descubriremos que hay una región del espacio en el que dichos campos se solapan (fig. 1).

Figure 1. Campo visual humano.
Consiguientemente, hay una zona del espacio que es vista simultáneamente por ambos ojos mientras que el resto del espacio es captado monocularmente.

✓ **Coordinación binocular de los movimientos oculares** para que los campos visuales monoculares se puedan solapar en todas las posiciones de mirada.

✓ **La fusión**: se necesita fusión para tener una percepción única de las sensaciones que recibimos de las retinas.

Existen dos tipos de fusión:

Fusión sensorial: es la unión de dos imágenes similares a nivel cerebral, (las enviadas por cada retina), en una imagen única. Para tener fusión sensorial las imágenes tienen que:

- Tener el mismo tamaño o muy similar. (No se da en anisometropías o aniseiconia).
- Tener la misma luminosidad o parecida.
- Tener el mismo contorno y forma. (No en ambliopía).
- Localizarse en el área fusional de Panum. (No se cumple en estrabismos).

Decimos que dos puntos retinianos son correspondientes si cuando se estimulan de forma separada parecen tener la misma dirección visual (se proyectan en la misma dirección).
Cuando se mantiene la fijación en un objeto, hay en el espacio una serie de puntos que estimulan puntos correspondientes en ambos ojos, por tanto, los objetos situados sobre estos puntos se verán simples.

Esto nos lleva a introducir el concepto de horóptero espacial:

Conocemos como horóptero espacial a la zona del espacio que, manteniendo la fijación en un punto fijo, contiene a los puntos objeto cuyas imágenes estimulan puntos correspondientes en cada retina.

Si la simetría ocular fuese perfecta, los puntos correspondientes tendrían la misma separación angular de la fóvea y el horóptero longitudinal formaría parte del círculo que pasara por el punto de fijación y los puntos nodales de los ojos incluyendo también al ojo cíclope. (Círculo de Vieth-Muller).

Esto en la práctica no es así ya que la simetría ocular no es perfecta. De hecho, la línea del horóptero longitudinal varía dependiendo de la distancia a la que se encuentre el punto de fijación.

Hay objetos relativamente cercanos al horóptero que, aunque estimulan puntos retinianos dispares (no correspondientes), también se ven simples. Esto se debe a que por delante y por detrás del horóptero longitudinal existen áreas de tolerancia de fusión para puntos dispares. A esta zona se le llama área de fusión sensorial o área fusional de Panum. Obviamente, éste área de fusión siempre contiene al horóptero (fig 2).

Una ilustración de este concepto se puede observar en la figura 2.
Llamamos área retiniana de Panum a la proyección del área fusional de Panum en la retina del sujeto.

A un punto de la retina de un ojo le corresponde un área o conjunto de puntos en la retina del otro ojo (áreas correspondientes o áreas de Panum). En lugar de existir una correspondencia punto a punto, existe una correspondencia de áreas de tal manera que las imágenes de objetos en estas áreas se fusionarán en una visión binocular simple.

Como se desprende de lo anterior, podemos entender que el área espacial de fusión no está limitada sólo a una superficie (horóptero) sino que ocupa un volumen.

Aunque hemos comentado que puede haber fusión sensorial a pesar de existir disparidad, esto es cierto para disparidades que no excedan de cierto valor. Si la diferencia es mayor, no hay fusión, por lo que podemos concluir que más allá de los límites del área fusional de Panum los objetos aparecen dobles. A esto se le llama diplopía fisiológica.

Fusión motora: capacidad de los ojos para mantener un alineamiento, de tal forma que se pueda mantener la fusión sensorial.

A continuación vamos a examinar con más detalle la fusión motora en visión tanto lejana como cercana:
Como ya se dijo anteriormente, cuando se desea mirar a un punto del espacio en condiciones monoculares se precisa que la fóvea de ese ojo apunte directamente al mismo. A este acto se le llama fijación.

Del mismo modo, cuando se pretende observar un punto en condiciones binoculares, las fóveas de ambos ojos deberían apuntar simultáneamente a dicho punto (fusión motora).

Que esto sea posible dependerá de factores como la posición anatómica de los ojos en sus respectivas órbitas y de la inervación que reciban los músculos extraoculares.

Según la clasificación de vergencias de Maddox a la que se refiere Morgan en su libro “The Maddox análisis of vergence”, las posibles fuentes de inervación son la **vergencia tónica** y la **vergencia de fusión** para objetos situados en el infinito. Para objetos cercanos además de las vergencias tónica y de fusión intervienen la **convergencia acomodativa** y la **proximal**.

Como se ve en la figura 3 para mirar a un objeto lejano se parte de la **posición anatómica de reposo A n** (posición divergente tomada por los ojos en las órbitas) y por la acción de la inervación tónica T o se adquiere la
posición fisiológica de reposo F_i. En este punto, si no se ha conseguido un alineamiento de ambas fóveas con el objeto deseado habrá disparidad retiniana y entonces entra en juego la vergencia fusional F_u que es la que se encarga de alinear definitivamente ambas fóveas con el objeto.

Para visión próxima el esquema tiene el mismo principio: acción de la inervación tónica T_o para pasar de la posición anatómica de reposo A_n a la fisiológica F_i.

Por ser un objeto situado en visión cercana se requiere que actúe el sistema acomodativo para ofrecer una imagen nítida del objeto en retina. Por la relación existente entre el sistema acomodativo y vergencial, al estimularse la acomodación se induce cierta convergencia (relación $A.C / A$). A la convergencia estimulada por el sistema acomodativo se le llama convergencia acomodativa $A.C$.

De igual modo, por tener noción de cercanía de un objeto se pone en juego una pequeña cantidad de convergencia a la que se le llama proximal P_r.

Si después de todo ello, la alineación de ambos ojos no es perfecta con el punto del espacio deseado deberá actuar en última instancia la vergencia fusional F_u que puede tomar ambas direcciones ya sea porque la convergencia estimulada hasta ese momento sea insuficiente o porque sea excesiva.

Nótese que la vergencia fusional solamente puede actuar en condiciones binoculares ya que entra en acción debido a la existencia de disparidad binocular. En condiciones monoculares el concepto de disparidad binocular no tiene sentido.

La fusión es un concepto binocular y requiere esfuerzo para llevarla a cabo y mantenerla.

De todo lo que acabamos de ver se puede concluir que en las condiciones en las que no existe binocularidad los ojos pueden estar desviados respecto al punto sobre el que se desea fijar. De un modo muy simplificado se puede
decir que si los rangos de vergencia fusional (positiva o negativa según corresponda) son suficientes como para conseguir la alineación con el punto de fijación diremos que estamos ante una desviación latente de los ejes visuales. A esta desviación se le conoce con el nombre de foria o heteroforia.

Si por el contrario la desviación es tan amplia que excede de los rangos de vergencias fusionales impidiendo la intersección de los ejes visuales en el objeto estaremos ante una desviación patente de los ejes visuales. A esta situación se le llama tropia o estrabismo.

A cabamos de ver que cuando hay desviación latente (heteroforia) de los ejes visuales es porque la vergencia fusional permite el alineamiento.

Sin embargo, es muy importante tener en cuenta que la demanda de vergencia fusional será mayor cuanto mayor sea la desviación latente de los ejes visuales.

Este hecho puede provocar en algunos casos síntomas asociados si la demanda es muy grande.
3.3. - SIGNOS Y SÍNTOMAS TÍPICOS ASOCIADOS AL SISTEMA ACOMODATIVO-VERGENCIAL

Los principales estímulos de las vergencias fusionales son la disparidad retiniana de las dos imágenes que produce diplopia y la borrosidad de la imagen. Estos estímulos provocan la respuesta de las vergencias fusionales y las acomodativas respectivamente. Por ello es muy difícil separar el sistema de vergencias del sistema de acomodación (en realidad son uno sólo, cuya función es ver una sola imagen nítida).

Las anomalías de la visión binocular generalmente están relacionadas con un grupo de signos y síntomas característicos aunque éstos dependerán de la adaptación que realice el paciente ya que si intenta mantener la binocularidad tendrá síntomas pero si suprime no.

Algunos de estos signos y síntomas típicos son:

- Excesivo parpadeo.
- Tensión ocular y dolores de cabeza relacionados con la lectura y el trabajo de cerca.
- Quemazón y lagrimeo.
- Mala concentración.
- Diplopia intermitente.
- Las palabras parecen que se mueven.
- Sensibilidad a la luz.
- Visión borrosa de cerca o de lejos.
- Borrosidad cuando se mira de cerca a lejos o de lejos a cerca.
- Incapacidad para mantener el trabajo de cerca.
- Distancia de trabajo corta
- Cierran o se tapan un ojo.
3.3.1. - Criterios de Percival, Sheard y Morgan

Tanto Percival como Sheard desarrollaron criterios para saber si, en condiciones de heteroforia, ésta se encuentra compensada o si no lo está y por ende, ocasiona síntomas. Estos criterios se basan en comparaciones internas ya que se comparan los datos obtenidos de una prueba con los extraídos de otras siendo todas ellas relativas a una misma persona.

El **criterio de Percival** (fig.4) afirma que el punto de demanda de un paciente (foria cero) debería estar situado en el tercio central (área de confortabilidad) del intervalo de vergencia relativa. Cuando hablamos de vergencia relativa nos referimos al valor de borrosidad de las pruebas de vergencias fusionales. P.ej.: V.F.P. (visión próxima): 11/17/13

La mayor crítica que se le suele hacer a este criterio es el hecho de que no tiene en cuenta ni la magnitud ni la dirección de la foria.

Es más aplaudido el criterio de Sheard (fig. 5) que, aunque tampoco tiene ninguna evidencia estadística, funciona bastante bien en el ámbito clínico siendo utilizado por multitud de optometristas. Este criterio nos dice que el valor de borrosidad correspondiente a la vergencia contraria (V.F.P. para exodesviaciones y V.F.N. para endodesviaciones) debe ser igual o mayor al doble de la magnitud de la foria. Si esto se cumple, se admite que el paciente no debe presentar síntomas.

Sheard se basó en que todo sistema debe tener un cierta reserva para hacer frente a posibles presiones a las que se pueda ver sometido.

Por otro lado, también se utiliza como referencia las normas de Morgan (fig. 6). Éstas se obtuvieron en los años 40 a partir de una muestra de 800 pacientes con pre-presbiopía.

Según Morgan, si los valores del paciente se hallan dentro del intervalo de normalidad, no es de esperar que el sujeto presente síntomas.

Estos rangos de normalidad son 1+/ -1 Δ exo en visión lejana y 3+/ -3 Δ exo en visión próxima (40 cms).

Conviene recordar que estamos hablando de heteroforias de distinta magnitud, de reservas fusionales... y es obvio que para tener estos valores han debido ser tomados con anterioridad.

En el presente estudio nos centraremos en la medida de la foria en visión próxima siendo medida con distintos test. Además nos interesaremos por la relación entre los valores obtenidos en posición primaria de mirada y en posición inferior.
3.4. - EVALUACIÓN DE LA MAGNITUD Y DIRECCIÓN DE LA HETEROFORIA

Para tomar la medida de la heteroforia es necesario eliminar la acción de la vergencia fusional. Esto se consigue rompiendo la fusión. Los distintos métodos de medida de la foria se basan en este hecho. Para romper la fusión podemos:

- Utilizar un oclusor que situaremos delante de uno de los ojos impidiendo la fusión motora. La vergencia fusional no actúa y los ojos adoptan la posición fisiológica de reposo. Este método se utiliza en el cover test.

- Presentar a cada ojo imágenes muy distintas lo que imposibilitará la fusión sensorial. De igual modo, se adopta la posición fisiológica de reposo. Utilizado en la técnica de la varilla de Maddox.

- Proyectar una misma imagen fuera de los límites del área de Panum. Esto se puede conseguir con prismas. No hay fusión sensorial y se adopta la posición fisiológica de reposo. Este sistema se utiliza en la medida de la foria con la técnica de Von Graefe.

A continuación, vamos a ver algunos aspectos importantes de los distintos test empleados en el presente trabajo:
3.4.1 - Medida de la foria utilizando el Cover Test (en ausencia de estrabismo)

El cover test es un método objetivo que nos permite evaluar la presencia, dirección y magnitud de la foria.

El control de la acomodación es fundamental en la realización del cover test. En el caso de que exista una hipoacomodación, el resultado será una sobreestimación del grado de exoforia o una subestimación de la endoforia. Una sobreacomodación conllevará resultados contrarios; una subestimación del grado de exoforia o una sobreestimación del grado de endoforia.

Se suele utilizar por ello, estímulos acomodativos tales como depresores de lengua con dibujos y/o letras pegadas o también cartas de cerca con letras correspondientes a distintas agudezas visuales.

En pacientes colaboradores se les puede instar a que se fijen en el estímulo que se les presenta y que traten de mantenerlo lo más nítido que puedan durante la realización de la prueba.

El cover test es uno de los métodos más valiosos para valorar las características motoras de la binocularidad. Es una técnica objetiva y nos es particularmente útil cuando se trabaja con niños pequeños o con pacientes que no nos ofrezcan una buena colaboración en pruebas subjetivas.

Los valores esperados para el cover test no han sido estudiados específicamente pero se espera que sean similares a los valores encontrados en otros test de forias. El valor esperado para lejos es 1 Δ de exoforia con una desviación estándar de +/- 1.00 Δ mientras que para visión próxima es de 3 Δ de exoforia con una desviación estándar de +/- 3.00 Δ.
3.4.2. - Medida de la foria utilizando la técnica de Von Graefe

El test de la foria de Von Graefe es un método subjetivo para evaluar la presencia, dirección y magnitud de la desviación. Este test no diferencia entre foria y tropia pero en este estudio, como los pacientes con tropias fueron descartados, los valores obtenidos al realizar la prueba se refieren al valor de la foria.

Al igual que en el cover test, el control de la acomodación es muy importante también cuando valoramos la foria utilizando la técnica de Von Graefe.

Es fundamental asegurarnos de que el paciente está fijando correctamente y controlando de este modo el sistema acomodativo. Habitualmente los optometristas solamente piden al paciente que mire a una línea de letras y diga cuándo la otra está justo encima o debajo. Para conseguir una acomodación más precisa se debería dar la siguiente instrucción: “Quiero que mires a la imagen de abajo y es muy importante que la mantengas clara todo el tiempo. Mientras la mantienes clara dime cuándo la imagen de arriba se coloca justamente encima de la imagen de abajo”.

Si no se pone atención al hecho de controlar la acomodación, esto nos puede llevar a variaciones y poca fiabilidad en la medida.

Otro aspecto importante a tener en cuenta es si el paciente entiende el test, especialmente si tratamos con pacientes especiales.
Medida de la foria en V.P.: Comparación entre pos. primaria y pos. inferior

Para conseguir la comprensión en los niños más pequeños se sugiere una demostración simple fuera del foróptero utilizando los dedos de uno mismo. Se pide al niño que mire a los dedos del examinador, que están colocados uno justo debajo del otro. Utilizamos la siguiente instrucción: “Mira al dedo de abajo y dime cuándo mi dedo de arriba está justo sobre mi dedo de abajo. (demostrarlo desalineando los dedos y volviéndolos a alinear). Ahora vamos a intentarlo, dime cuándo paro”.

El uso de este método permite al examinador determinar si el paciente ha comprendido lo que se quiere.

El valor esperado para lejos es 1 Δ de exoforia con una desviación estándar de +/- 1.00 Δ.

El valor medio esperado en cerca es de 3 Δ de exoforia con una desviación estándar de +/- 3.00 Δ.
3.4.3. Medida de la foria utilizando la varilla de Maddox

Es un método subjetivo para evaluar la presencia, dirección y magnitud de la desviación. Al igual que el método anterior, no diferencia entre foria y tropia.

El control de la acomodación es un problema asociado a la técnica de la Varilla de Maddox. Por esta razón no se considera el mejor test de elección para medir la foria lateral de cerca.

La principal ventaja de esta técnica es que se pueden utilizar en pacientes que son difíciles de examinar con el foróptero. Por esta razón es valiosa con niños menores de 7-8 años.

El valor esperado para lejos es 1 dioptría prismática de exoforia con una desviación estándar de +/- 1.00 Δ.

El valor medio esperado en cerca es de 3 Δ de exoforia con una desviación estándar de +/- 3.00 Δ.
3.5. - DISPARIDAD DE FIJACIÓN

Aunque no haya sido objeto de estudio en este trabajo, es muy interesante comentar algunas pinceladas acerca de la disparidad de fijación y su relación con la medida de la heteroforia.

Con el test de disparidad de fijación se evalúa la visión binocular en condiciones asociadas en oposición a lo que ocurre con el cover test, la foria de von Graefe, la varilla de Maddox y otros en los que se está bajo condiciones de disociación.

Conviene comentar algunas cosas con respecto a la medida de la foria vs medida de la disparidad de fijación:

a) El principal defecto de la medida típica de la foria es que la medida se hace en condiciones disociadas. El test de disparidad de fijación se realiza en condiciones binoculares. Wick afirma que el error vergencial en condiciones binoculares a menudo no es el mismo que en condiciones monoculares. Por tanto hay situaciones en las que un paciente puede ser sintomático, pero el análisis convencional foria/vergencia no nos da una explicación clara de las causas de los síntomas del paciente. Por ello, algunos clínicos sugieren el uso rutinario del test de disparidad de fijación, pero es cierto que en la mayoría de los casos, los test de foria y vergencias son suficientes para obtener un diagnóstico tentativo y un plan de tratamiento.

El test de disparidad de fijación es un test complementario útil en el examen en aquellas situaciones en las que el diagnóstico no está claro o se está considerando la prescripción de prismas.
b) Existen varios instrumentos para evaluar la disparidad de fijación. Para determinar la foria asociada se utilizan instrumentos antiguos como la unidad de Mallet, la lámina vectográfica de American Optical, la tarjeta de Borish o el test de Lantern de Bernell. La foria asociada es la cantidad de prismas necesarios para neutralizar cualquier desalineamiento percibido de las líneas que se muestran.

Estudios más recientes sugieren que el test de disparidad de fijación de vergencias forzadas es más útil para determinar aquellos pacientes susceptibles de tener síntomas. El test de disparidad de fijación de vergencias forzadas debería se utilizado para valorar la desviación horizontal mientras que para la desviación vertical, la foria asociada es suficiente.

c) El test de disparidad de fijación actualmente es considerado el método de elección para determinar la corrección prismática en anomalías binoculares. Otros métodos tienden a dar mayor cantidad de prismas que el análisis de la disparidad de fijación.
3.6 - POSICIÓN PRIMARIA Y POSICIÓN INFERIOR DE MIRADA: MÚSCULOS IMPLICADOS

Antes de finalizar con el repaso a la base teórica, se hace imprescindible comentar algunos aspectos acerca de las posiciones de mirada (fig 7).

La posición central del cuadro representa la posición primaria de mirada. A la posición que adoptan los ojos en el cuadrante central inferior se le denomina posición inferior de mirada.

Los movimientos oculares se producen gracias a la acción de los músculos extraoculares (fig. 8). En número de 6 (en cada ojo), se insertan en el globo ocular y permiten la movilidad del mismo.
Podemos diferenciar entre músculos rectos y oblicuos.

Los rectos son cuatro: recto superior (RS), recto inferior (RI), recto medio (RM), y recto lateral (RL).

Los oblicuos son dos: oblicuo superior o mayor (OS), y oblicuo inferior o menor (OI).

Las acciones de dichos músculos las podemos ver en la siguiente tabla:
ACCIONES MUSCULARES

<table>
<thead>
<tr>
<th>ACCIÓN PRIMARIA</th>
<th>ACCIÓN SECUNDARIA</th>
<th>ACCIÓN TERCERARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recto lateral</td>
<td>abducción</td>
<td>---</td>
</tr>
<tr>
<td>Recto medio</td>
<td>aducción</td>
<td>---</td>
</tr>
<tr>
<td>Recto superior</td>
<td>elevación</td>
<td>inciclotorsión</td>
</tr>
<tr>
<td>Recto superior</td>
<td>depresión</td>
<td>exciclotorsión</td>
</tr>
<tr>
<td>Recto inferior</td>
<td>inciclotorsión</td>
<td>depresión</td>
</tr>
<tr>
<td>Recto inferior</td>
<td>elevación</td>
<td>abducción</td>
</tr>
<tr>
<td>Recto inferior</td>
<td>abducción</td>
<td>---</td>
</tr>
</tbody>
</table>

Figura 9. Acciones de los músculos extraoculares.

Para llevar los globos oculares a la posición inferior de mirada se requiere de la acción del recto inferior como agente primario del movimiento aunque el oblicuo superior también colabora ya que la depresión es su acción secundaria.

Pero debemos tener en cuenta una particularidad en el caso de que hablemos de posiciones de mirada en visión próxima. En visión próxima se requiere convergencia de los ejes visuales sobre el objeto a fijar. Esto implica una acción de los músculos rectos internos de ambos ojos para llegar a esta posición convergente.

Por tanto, cuando hablamos de la posición inferior de mirada en visión próxima debemos tener presente el doble movimiento: por un lado la depresión del globo ocular y por otro la convergencia que se requiere en visión próxima. Para la posición primaria de mirada, solamente tenemos la convergencia.
4. Muestra, material y métodos
4.1. - MUESTRA

4.1.1. Características personales
La muestra constó de 30 pacientes de los cuales, 10 eran varones y 20 eran mujeres.
La edad estuvo comprendida entre los 18 y los 29 años.
Nivel sociocultural: la mayoría tenía o estaba cursando estudios universitarios. Como ocupaciones actuales había estudiantes, administrativos, enfermeras, parados...

4.1.2. Características visuales

- **A.V.:** Se aceptaron valores iguales o superiores a 0.9 en visión próxima.
 Se admitió una diferencia de una línea entre ambos ojos.
 Todo paciente que no cumplió con estas condiciones fue excluido del estudio.

- **ESTADO REFRACTIVO:** No se incluyeron a pacientes con anisometropías superiores a 1 dioptría.
 Además, pacientes con corrección en gafa iguales o superiores a +/-4.00 dp (también incluyendo la potencia astigmática; p.ej. -2.50 - 1.75 a 180°) fueron excluidos ya que altas potencias dióptricas ocasionan mayores efectos prismáticos en el caso de que la línea de mirada no pase por el centro óptico de la lente. Los efectos prismáticos influyen en el valor medido de la foria.
VISIÓN BINOCULAR: Pacientes con tropia en visión próxima, operados de estrabismo, con supresión en visión de cerca o desviaciones latentes verticales de 2 ó Δ fueron rechazados.
Para comprobar la desviación vertical se utilizó la varilla de Maddox en visión próxima ayudándonos de la barra de prismas.

SALUD OCULAR: También se descartó a pacientes operados de estrabismo.
Igualmente, no se consideraron aptos pacientes afáquicos o pseudoafáquicos; es decir, pacientes operados de cataratas con o sin implante de lente intraocular (LIO).

Tampoco se incluyeron en la muestra pacientes intervenidos con alguna técnica de cirugía refractiva como Lasik, PRK o similares.

Se exigió una salud ocular normal (historia ocular no significativa).

De los 30 pacientes de la muestra, 7 de ellos utilizaban gafas en visión próxima con lo cual, se tomaron las medidas con ellas puestas. De igual modo, hubo 2 pacientes que utilizaban lentes de contacto (hidrofílicas en ambos casos) realizándose las pruebas también con ellas. El resto de la muestra, (21 pacientes) no utilizaban compensación de ningún tipo para visión próxima.
4.2. - MATERIAL

4.2.1. - Instrumental de gestión (fichas)

Ver anexos.

4.2.2. - Instrumental de evaluación (aparatos)

El material utilizado para cada prueba fue el siguiente:

COVER TEST

- Columna y foróptero Oftálmica Ibérica con la barra de cerca correspondiente.
- Test de fijación de Topcon con línea vertical de letras correspondientes a una A.V. de 0.4 a 40 cms.
- Oclusor opaco.
- Metro.
- Barra de prismas horizontales y verticales de Luneau.
MADDOX

- Metro.

Foto 3. Metro

- Linterna puntual.
- Varilla de Maddox.
- Barra de prismas horizontales y verticales de Luneau.
- Tarjeta de Maddox para visión próxima (40 cms).

Foto 4. Barra de prismas, varilla de Maddox y linterna puntual.

Foto 5. Tarjeta de Maddox, varilla de Maddox y linterna puntual.

MEDIDA DE LA FORIA EN V.P.: COMPARACIÓN ENTRE POS. PRIMARIA Y POS. INFERIOR

DIASPORÁMETRO (foróptero)

- Columna y foróptero Oftálmica Ibérica con la barra de cerca.
- Test de fijación de Topcon con línea vertical de letras correspondientes a una A.V. de 0.4 a 40 cms.

4.2.3. - Instrumental estadístico (programas)

- Excel
- Statgraphics 3.0 Plus
4.3. - MÉTODOS

4.3.1. - Selección de la muestra

EDAD: Se excluyó del estudio a los présbitas. Se tomó este criterio debido a que la relación existente entre el sistema acomodativo y el vergencial en este tipo de pacientes se encuentra condicionado por el déficit de la capacidad acomodativa.

Al final, el rango de edades de la muestra quedó comprendido entre los 18 y los 29 años.
De los 30 pacientes de la muestra, 10 fueron hombres y 20 fueron mujeres.
No se pretendió ninguna relación especial entre el número de hombres y mujeres. Simplemente el azar hizo que se obtuviera este reparto en la muestra.
En cuanto a los criterios de inclusión / exclusión, han sido comentados con anterioridad en el apartado 4.1.2.

4.3.2. - Recopilación de datos / Test de evaluación

4.3.2.1. - ORDEN DE LAS PRUEBAS

Para evitar la influencia de las posibles adaptaciones prismáticas, la fatiga y el efecto del aprendizaje en la toma de medidas se consideró aleatorizar tanto el orden de la posición de mirada en la que se tomaban las medidas como el orden de las pruebas dentro de una misma posición.
Medida de la foria en V.P.: Comparación entre pos. primaria y pos. inferior

En cuanto a la posición en la que se realizaron las medidas (posición primaria y posición inferior) se tomó para los pacientes impares el siguiente orden:
1°- posición primaria de mirada.
2°- posición inferior.
En los pacientes pares se invirtió el orden.

Para el orden de las pruebas dentro de una misma posición de mirada se dispuso lo siguiente:

- El cover test se realizó siempre en primer lugar ya que en clínica esta medida objetiva precede habitualmente a la medida de la foria con métodos subjetivos.
Además, en nuestro caso, el cover simple fue utilizado como criterio de exclusión para participar en el estudio ya que se descartaron casos de tropia.

A continuación se muestra el orden establecido para cada uno de los pacientes:

<table>
<thead>
<tr>
<th>NÚMERO DE PACIENTE</th>
<th>NÚMERO DE PACIENTE</th>
<th>ORDEN DE LAS PRUEBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPM: CT - D - M</td>
<td>INF: CT - M</td>
</tr>
<tr>
<td>2</td>
<td>INF: CT - M</td>
<td>PPM: CT - D - M</td>
</tr>
<tr>
<td>3</td>
<td>PPM: CT - D - M</td>
<td>INF: CT - M</td>
</tr>
<tr>
<td>4</td>
<td>INF: CT - M</td>
<td>PPM: CT - M - D</td>
</tr>
<tr>
<td>5</td>
<td>PPM: CT - M - D</td>
<td>INF: CT - M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>INF:</th>
<th>PPM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>7</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>8</td>
<td>CT – M</td>
<td>CT – D - M</td>
</tr>
<tr>
<td>9</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>10</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>11</td>
<td>CT – M - D</td>
<td>CT - M</td>
</tr>
<tr>
<td>12</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>13</td>
<td>CT – D - M</td>
<td>CT - M - B</td>
</tr>
<tr>
<td>14</td>
<td>CT – M</td>
<td>CT - D - M</td>
</tr>
<tr>
<td>15</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>16</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>17</td>
<td>CT – M - D</td>
<td>CT - M</td>
</tr>
<tr>
<td>18</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>19</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>20</td>
<td>CT – M</td>
<td>CT - D - M</td>
</tr>
<tr>
<td>21</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>22</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>23</td>
<td>CT – M - D</td>
<td>CT - M</td>
</tr>
<tr>
<td>24</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>25</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>26</td>
<td>CT – M</td>
<td>CT - D - M</td>
</tr>
<tr>
<td>27</td>
<td>CT – D - M</td>
<td>CT - M</td>
</tr>
<tr>
<td>28</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
<tr>
<td>29</td>
<td>CT – M - D</td>
<td>CT - M</td>
</tr>
<tr>
<td>30</td>
<td>CT – M</td>
<td>CT - M - D</td>
</tr>
</tbody>
</table>
4.3.2.2. - CONSIDERACIONES ACERCA DE LA UTILIZACIÓN DE PRISMAS EN LA MEDIDA DEL VALOR FÓRICO

Las medidas subjetivas están sujetas a la influencia de la colocación de los prismas y las barras de prismas, que han de situarse de forma diferente según la posición de mirada en la que se estén tomando las medidas. Además hay que tener en cuenta si se trata de fijación cercana o a distancia.

La neutralización de forias puede verse afectada por la posición del prisma, las reflexiones y la dispersión cromática.

MEDIDAS OBJETIVAS

Mirada primaria con fijación a distancia

La posición de Prentice (fig. 10) en la que la superficie ocular del prisma es perpendicular a la línea de visión del ojo con desviación, es la correcta cuando los prismas son de vidrio. En medios clínicos, sin embargo, es frecuente utilizar prismas de plástico situados en una posición de plano frontal (fig. 11), con la superficie ocular en el plano frontoparalelo y perpendicular a la dirección del objeto en que se fija la mirada.

Figura 11. Posición de plano frontal.

Los prismas de plástico individuales se calibran en realidad con el fin de que puedan colocarse en una posición de desviación mínima (fig 12), en la cual la luz se desvía por igual en todas las superficies del prisma. Esta posición requiere una ligera angulación de la base del prisma hacia fuera de la cara del paciente, comparada con la posición de plano frontal. Las barras de prismas de plástico, tanto horizontales como verticales, se calibran también de modo que se obtenga una posición de desviación mínima. (Richard Daley, Astron International, Mt Dora, Florida, 1992).

Se usará la posición de plano frontal para obtener medidas precisas con prismas de plástico en posiciones de mirada primaria y no primaria.

Thompson y Guyton recomiendan la posición de plano frontal tanto para prismas libres de plástico como para barras de prismas de plástico, debido a que es una posición mucho más fácil de conseguir con precisión. Sin embargo debería evitarse la posición de Prentice cuando se usan prismas de plástico (en particular en prismas de gran potencia); un prisma de plástico de 40 Δ colocado en posición de Prentice posee una potencia real de 72 Δ.
Fijación cercana

Si un prisma no se coloca de forma adecuada, pueden producirse errores de medida cuando se neutralicen las desviaciones con pruebas de obturación de fijación cercana. Al ser necesario mantener la superficie ocular del prisma perpendicular a la dirección del objeto de fijación (para evitar errores de medida), el prisma debe girarse ligeramente hacia el interior cuando el objeto esté en un punto cercano; ello facilitará la convergencia de las líneas de visión del paciente.

Otra consideración que ha de tenerse presente cuando se realizan pruebas de obturación en puntos cercanos es la eficacia del prisma. Con un objeto cercano, la potencia eficaz del prisma disminuye conforme éste se aleja del ojo.

Thompson y Guyton recomiendan que, para evitar la aparición de errores de medida importantes, no se deben colocar los prismas a distancias superiores a 2 cm desde el centro de rotación (aproximadamente 1 cm desde la córnea).

MEDIDAS SUBJETIVAS

En general, las medidas subjetivas pueden verse influidas negativamente por las reflexiones procedentes de bombillas o luces que, situadas encima de su cabeza, puedan confundir al paciente. Las bandas de dispersión cromática resultantes en algunos prismas también son molestos, aunque por lo general pueden ignorarse. Habría de comprobarse personalmente, en la sala de examen, la calidad visual con los instrumentos precisos para determinar si las condiciones de iluminación pueden interferir en las medidas y llevar a cabo, en caso necesario, todos los ajustes posibles.
Forias

Las medidas sujetivas de una desviación pueden realizarse usando una varilla de Maddox o una lente roja en combinación con prismas de plástico. Una vez más, es importante mantener los prismas en posición de plano frontal, ya se lleven a cabo las medidas en mirada primaria o no primaria. Además, para las medidas con fijación cercana, es vital poner el prisma lo más próximo al ojo que se pueda (por cuestiones de eficacia) e inclinar el prisma hacia dentro para compensar la convergencia ocular.

Una vez comentada la importancia de la colocación de los prismas en la toma de medidas, se describe a continuación cómo se realizaron las diferentes pruebas:

4.3.2.3. - REALIZACIÓN DE LAS PRUEBAS

➢ POSICIÓN PRIMARIA DE MIRADA

Cover Test

-Iluminación: se realizó con la luz de la habitación encendida y con la luz de cerca de la columna de refracción a la máxima intensidad.
En pacientes no portadores de gafas o lentes de contacto se hizo la prueba a ojo desnudo.

Los pacientes portadores de gafas o lentes de contacto, llevaron su corrección si la usaban en visión próxima. En caso de que el paciente no usara corrección en cerca, se realizó la prueba a ojo desnudo.

Se utilizó un test de cerca que contenía una línea vertical de letras cuyo tamaño correspondía a una AV = 0.4 a una distancia de 40 cms. Dicho test se situó a la altura de los ojos del paciente a una distancia de 40 cms del mismo.

Las instrucciones que se le dieron al paciente fueron: “Mira atentamente a esta letra (se señala una de ellas) e intenta verla nítida todo el tiempo. Es muy importante que no dejes de mirarla hasta que yo te diga”.

Se utilizó un oclusor opaco y se realizó en primer lugar un cover simple para descartar la presencia de tropia. En caso de que la hubiera, el paciente no fue considerado apto para participar en el estudio. Si el paciente no presentaba tropia, se procedía a tomar medidas realizando el cover alternante.

-A continuación se realizó el cover test alternante:

a) Si no se apreciaba movimiento se anotaba “orto” en el apartado de “medida objetiva tradicional”.

A continuación, ayudándonos de la barra de prismas base horizontal y cambiando la potencia prismática de la base se procedía a buscar el primer valor prismático con el que se observaba movimiento de exo y de endo. Se tomó como valor de la “medida objetiva modificada” a la media de ambas. Por ejemplo: $4 \Delta BT / 2 \Delta BN$

Tenemos de media: $1 \Delta BT$ que equivale a 1Δ de endo.

b) Si se apreciaba movimiento, se procedía a neutralizarlo anotando el valor prismático anterior a la neutralización del movimiento y aumentando la potencia prismática, se anotaba un segundo valor que correspondía al prisma con el que se veía de nuevo movimiento.
Maddox

Se realizó en condiciones mesópicas bajas.
En pacientes no portadores de gafas o lentes de contacto se hizo la prueba a ojo desnudo.
En pacientes portadores de gafas o lentes de contacto, llevaron su corrección si la usaban en visión próxima. En caso de que el paciente no usara corrección en cerca, se realizó la prueba a ojo desnudo.

A una distancia de 40 cms del paciente se encendía una linterna puntual. Se le preguntaba al paciente acerca de lo que estaba viendo a lo que se esperaba que contestase que una luz blanca/ amarilla.

En primer lugar se situó una varilla de Maddox roja con las estrías en posición vertical delante del ojo derecho para tomar la desviación vertical. Si dicho valor era igual o superior a 2 dioptrías prismáticas el paciente era descartado.

Foto 11. Maddox con prismas en posición primaria de mirada.
A continuación se situaba la varilla de Maddox roja con las estrías en posición horizontal delante del ojo derecho.
Al preguntar al paciente, éste debía responder que veía una luz blanca/amarilla y una línea roja vertical.
Dependiendo de la posición relativa entre ambas, se compensaba con prismas si correspondía.
Se anotaba el valor con el que se conseguía alineamiento o la media si estábamos entre 2 valores prismáticos. Dicho valor se anotaba en la casilla “Maddox con prismas” correspondiente a la posición primaria de mirada.

De igual modo, situando delante de la linterna la tarjeta de cerca y utilizando la varilla de Maddox rojo delante del ojo derecho se preguntaba al paciente por qué número pasaba la línea roja y se anotaba en la casilla “Maddox con tarjeta” para la posición primaria de mirada.

Foto 12. Maddox con tarjeta en posición primaria de mirada.
Foróptero (diasporámetro)

Iluminación: se realizó con la luz de la habitación encendida y con la luz de cerca de la columna de refracción a la máxima intensidad.

En pacientes no portadores de gafas o lentes de contacto se hizo la prueba a ojo desnudo. En pacientes portadores de lentes de contacto, las llevaron puestas si las usaban en visión próxima. Si el paciente usaba gafas en visión próxima, le eran retiradas y se procedía a situar en el foróptero la potencia correspondiente a la de su gafa.

Se utilizaba un test de cerca que contiene una línea vertical de letras cuyo tamaño corresponde a una AV = 0.4 a una distancia de 40 cms. Dicho test se situaba a la altura de los ojos del paciente a una distancia de 40 cms del mismo ayudándonos con la barra de cerca del foróptero. Se ponía la distancia interpupilar de lejos del paciente y se situaba el foróptero en posición de cerca (ejes convergentes).

En el ojo derecho se situaba un prisma de 9 Δ base superior. En el ojo izquierdo, se partía del valor obtenido en el Cover test tradicional sumándole 10 Δ.

Estando los dos oculares ocluidos, se procedía a destapar el derecho y se pedía al paciente que dijera lo que veía. Se esperaba que dijera que veía una línea vertical de letras. A continuación se procedía a destapar el ojo izquierdo y se le volvía a preguntar. Se esperaba que contestara que veía dos líneas verticales de letras situada una más arriba respecto de la otra y desalineadas horizontalmente.
Se le daba al paciente las siguientes instrucciones: “fíjate en la línea de abajo pero sin perder de vista la de arriba que empezará a moverse. Cuando se pongan alineadas verticalmente dices YA”.

Se realizaba la prueba y se anotaba el valor del prisma resultante en la ficha.
POSICIÓN INFERIOR DE MIRADA

Cover Test

Iluminación: se realizó con la luz de la habitación encendida y con la luz de cerca de la columna de refracción a la máxima intensidad.

En pacientes no portadores de gafas o lentes de contacto se hizo la prueba a ojo desnudo.

En pacientes portadores de gafas o lentes de contacto, llevaron su corrección si la usaban en visión próxima. En caso de que el paciente no usara corrección en cerca, se realizó la prueba a ojo desnudo.

Se utilizó un test de cerca que contenía una línea vertical de letras cuyo tamaño corresponde a una AV = 0.4 a una distancia de 40 cms.

Dicho test se situó enfrente del paciente a una distancia de 40 cms del mismo.

Se pedía al paciente que moviera la cabeza hacia atrás. Entonces, y sin mover la cabeza, debía mirar al test con lo cual sus ojos quedaban en infraversión.

Foto 15. Cover test en posición inferior de mirada.
Las instrucciones que se le dieron al paciente fueron: “Mira atentamente a esta letra (se señala una de ellas) e intenta verla nítida todo el tiempo. Es muy importante que no dejes de mirarla hasta que yo te diga”.

Se utilizó un oclusor opaco y se realizó en primer lugar un cover simple para descartar la presencia de tropia. En caso de haberla, el paciente no fue considerado apto para participar en el estudio. Si el paciente no presentaba tropia, se procedía a tomar medidas realizando el cover alternante.

Se realizaba el Cover Test alternante:

a) Si no se apreciaba movimiento se anotaba “orto” en el apartado de “medida objetiva tradicional”.
A continuación, ayudándonos de la barra de prismas base horizontal y cambiando la potencia prismática de la base se procedía a buscar el primer valor prismático con el que se observaba movimiento de exo y de endo. Tomábamos como valor de la “medida objetiva modificada” a la media de ambas.

b) Si se apreciaba movimiento, procedíamos a neutralizarlo anotando el valor prismático anterior a la neutralización del movimiento y, aumentando la potencia prismática, se anotaba un segundo valor que correspondía al prisma con el que veíamos de nuevo movimiento.

Maddox

Se realizó en condiciones de iluminación mesópicas bajas. En pacientes no portadores de gafas o lentes de contacto se hizo la prueba a ojo desnudo.
Medida de la foria en V.P.: Comparación entre pos. primaria y pos. inferior

En pacientes portadores de gafas o lentes de contacto, llevaron su corrección si la usaban en visión próxima. En caso de que el paciente no usara corrección en cerca, se realizaba la prueba a ojo desnudo.

Se pedía al paciente que moviera la cabeza hacia atrás. Entonces, y sin mover la cabeza, debía mirar al test con lo cual sus ojos quedaban en infraversión.

Se le preguntaba al paciente acerca de lo que estaba viendo a lo que se esperaba que contestase que una luz blanca/amarilla.

En primer lugar se situaba una varilla de Maddox roja con las estrías en posición vertical delante del ojo derecho para tomar la desviación vertical. Si dicho valor era igual o superior a 2 dioptrías prismáticas el paciente era descartado.

A continuación situábamos la varilla de Maddox roja con las estrías en posición horizontal delante del ojo derecho.

Al preguntar al paciente, debía responder que veía una luz blanca/amarilla y una línea roja vertical.

Dependiendo de la posición relativa entre ambas, se compensaba con prismas si correspondía.

Anotábamos el valor con el que conseguíamos alineamiento o la media si estábamos entre 2 valores prismáticos.

De igual modo, situando delante de la linterna la tarjeta de cerca y utilizando la varilla de Maddox rojo delante del ojo derecho se preguntaba al paciente
por qué número pasaba la línea roja y se anotaba en el apartado correspondiente.

4.3.3. - Método estadístico

Se utilizaron parámetros tales como la media aritmética, desviación estándar, coeficiente de asimetría, coeficiente de curtosis, valor p, máximo, mínimo y coeficiente de correlación. Ver el apartado 5.
5. Resultados
Figura 13. Relación entre el número de hombres y mujeres.

Figura 14. Tipo de compensación utilizada por los pacientes.
Nota:

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.

COVER TEST TRADICIONAL

<table>
<thead>
<tr>
<th>POSICIÓN PRIMARIA</th>
<th>POSICIÓN INFERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media : - 2.10</td>
<td>Media : - 1.50</td>
</tr>
<tr>
<td>D.E. : 2.64</td>
<td>D.E. : 2.01</td>
</tr>
<tr>
<td>C. asimetría : - 0.48</td>
<td>C. asimetría : - 0.55</td>
</tr>
<tr>
<td>C. kurtosis : - 0.77</td>
<td>C. kurtosis : - 0.88</td>
</tr>
<tr>
<td>Máximo : 2</td>
<td>Máximo : 2</td>
</tr>
<tr>
<td>Mínimo : - 8</td>
<td>Mínimo : - 6</td>
</tr>
</tbody>
</table>

COVER TEST MODIFICADO

<table>
<thead>
<tr>
<th>POSICIÓN PRIMARIA</th>
<th>POSICIÓN INFERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media : - 2.55</td>
<td>Media : - 2.15</td>
</tr>
<tr>
<td>D.E. : 2.97</td>
<td>D.E. : 2.53</td>
</tr>
<tr>
<td>C. asimetría : - 0.09</td>
<td>C. asimetría : 0.37</td>
</tr>
<tr>
<td>C. kurtosis : - 0.30</td>
<td>C. kurtosis : - 0.01</td>
</tr>
<tr>
<td>Máximo : 3</td>
<td>Máximo : 5</td>
</tr>
<tr>
<td>Mínimo : - 9</td>
<td>Mínimo : - 6</td>
</tr>
</tbody>
</table>
Medida de la foria en V.P.: Comparación entre pos. primaria y pos. inferior

MADDOX CON PRISMAS

<table>
<thead>
<tr>
<th></th>
<th>POSICIÓN PRIMARIA</th>
<th>POSICIÓN INFERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>- 1.43</td>
<td>- 1.23</td>
</tr>
<tr>
<td>D.E.</td>
<td>3.35</td>
<td>2.34</td>
</tr>
<tr>
<td>C. asimetría</td>
<td>0.40</td>
<td>0.62</td>
</tr>
<tr>
<td>C. kurtosis</td>
<td>0.10</td>
<td>- 0.06</td>
</tr>
<tr>
<td>Máximo</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Mínimo</td>
<td>- 7</td>
<td>- 5</td>
</tr>
</tbody>
</table>

MADDOX CON TARJETAS

<table>
<thead>
<tr>
<th></th>
<th>POSICIÓN PRIMARIA</th>
<th>POSICIÓN INFERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>- 0.85</td>
<td>- 1.08</td>
</tr>
<tr>
<td>D.E.</td>
<td>2.78</td>
<td>2.49</td>
</tr>
<tr>
<td>C. asimetría</td>
<td>0.26</td>
<td>0.17</td>
</tr>
<tr>
<td>C. kurtosis</td>
<td>- 0.61</td>
<td>- 0.32</td>
</tr>
<tr>
<td>Máximo</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mínimo</td>
<td>- 6</td>
<td>- 6</td>
</tr>
</tbody>
</table>
FORÓPTERO

POSICIÓN PRIMARIA

Media : - 2.66
D.E. : 4.20
C. asimetría : 0.99
C. kurtosis : 0.71
Máximo : 9
Mínimo : - 9
Medida de la foria en V.P.: Comparación entre pos. primaria y pos. inferior

6. Discusión
Al comparar los resultados en posición primaria de mirada con los de la posición inferior encontramos en todos los test que los valores obtenidos para el coeficiente de asimetría y coeficiente de kurtosis están dentro del rango (-2, 2) con lo que se asume que se tiene una distribución normal utilizando por ello como contraste de hipótesis la “t de Student”.

A continuación se detallan los resultados para cada test:

COVER TEST TRADICIONAL

El valor de p resultó ser 0.0651 lo cual implica que no se puede rechazar la hipótesis nula $H_0: \mu_1 - \mu_2 = 0$ en favor de la hipótesis alternativa $H_1: \mu_1 < \mu_2$ planteada en este estudio (ver cap. 2, pág. 5) aunque en este caso se obtuvieron unos valores marginalmente significativos hacia valores menos exofóricos / más endofóricos en posición inferior de mirada.

Es posible que con una muestra mayor se obtenga un valor de p < 0.05 con lo que sería interesante tenerlo en cuenta en un siguiente estudio.

COVER TEST MODIFICADO

El valor de p obtenido fue 0.1341 lo cual implica que no se puede rechazar la hipótesis nula en favor de la hipótesis alternativa.

Aún así, se muestra una tendencia hacia valores menos exofóricos / más endofóricos en el 46.66 % de los casos.
MADDOX CON PRISMAS

Aunque el valor de p fue 0.3109, los resultados porcentuales revelan una tendencia en el 40 % de los casos hacia valores menos exofóricos / más endofóricos en posición inferior.

MADDOX CON TARJETA

Merece una especial mención el valor p de 0.7585 que muestra una dirección contraria a la esperada puesto que la tendencia es hacia valores más exofóricos / menos endofóricos.

FORÓPTERO

Se tomaron valores en posición primaria de mirada pero no en la inferior ya que el foróptero no permite una posición adecuada para valorar la desviación en posición inferior.

Por consiguiente, no hay comparación posible para este test aunque se pueden sacar algunas conclusiones. Se obtuvo una D.E. elevada con lo cual, no podemos considerar que presente una gran estabilidad en la medida.
Esto puede deberse a las limitaciones que encierra la propia medida. Se habló de que el modo de disociación en esta prueba era la utilización de prismas para salir del área fusional de Panum. Ahora bien, cuanto mayor es la longitud vertical del test, mayor debería ser la cantidad prismática del prisma disociador para evitar el reflejo fusional.

Si no se controla este aspecto, puede ocurrir que durante la toma de la medida se estimule la vergencia fusional dando lugar a valores más exofóricos / menos endofóricos (ya que se parte de un prisma medidor de base nasal).

Otro aspecto a tener en cuenta es el coeficiente de correlación que permite cuantificar el grado de asociación existente entre dos variables de una variable bidimensional.

POSICIÓN PRIMARIA DE MIRADA

<table>
<thead>
<tr>
<th></th>
<th>Cover test tradicional</th>
<th>Cover test modificado</th>
<th>Maddox prismas</th>
<th>Maddox tarjeta</th>
<th>Foróptero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover test tradicional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover test modificado</td>
<td>0.9406</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maddox prismas</td>
<td>0.6238</td>
<td>0.7350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maddox tarjeta</td>
<td>0.6723</td>
<td>0.7711</td>
<td>0.9089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foróptero</td>
<td>0.6638</td>
<td>0.7339</td>
<td>0.6940</td>
<td>0.6645</td>
<td></td>
</tr>
</tbody>
</table>

COEFICIENTE DE CORRELACIÓN

<table>
<thead>
<tr>
<th></th>
<th>Cover test tradicional</th>
<th>Cover test modificado</th>
<th>Maddox prismas</th>
<th>Maddox tarjeta</th>
<th>Foróptero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tradicional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modificado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maddox prismas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maddox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tarjeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foróptero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Medida de la foria en V.P. : Comparación entre pos. primaria y pos. inferior

POSICIÓN INFERIOR DE MIRADA

<table>
<thead>
<tr>
<th></th>
<th>Cover test tradicional</th>
<th>Cover test modificado</th>
<th>Maddox prismas</th>
<th>Maddox tarjeta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover test tradicional</td>
<td>0.8741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover test modificado</td>
<td></td>
<td>0.4859</td>
<td>0.6370</td>
<td></td>
</tr>
<tr>
<td>Maddox prismas</td>
<td>0.3856</td>
<td>0.6013</td>
<td>0.8325</td>
<td></td>
</tr>
<tr>
<td>Maddox tarjeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De entre otros aspectos, cabe destacar la alta correlación obtenida para ambas posiciones de mirada en los siguientes casos:

- Cover test tradicional vs Cover test modificado
- Maddox con prismas vs Maddox con tarjeta

Para el resto, la correlación fue marcadamente menor como se puede ver en las tablas.

Así, vemos que la correlación entre las técnicas del cover test y las del Maddox correlacionan bajo lo que sugiere que se obtienen valores diferentes según el test utilizado. Este extremo lo podemos confirmar si nos fijamos en los resultados obtenidos para el cover test (tradicional y modificado) y los que se tienen para el Maddox (prismas y tarjeta) en los que se puede ver que con las dos técnicas del Maddox se obtienen valores menos exofóricos /
más endofóricos que con las del cover test para ambas posiciones de mirada (ver capítulo 5).

Este punto ya era de esperar ya que en otros estudios como el realizado por González, F. et al. en los que se comparó Maddox con otras técnicas se obtuvieron resultados semejantes aún cuando se realizaran las pruebas en visión lejana.

Como posible explicación a este hecho podemos contemplar lo siguiente:

La utilización de la varilla de Maddox en visión próxima resulta bastante discutible ya que el control acomodativo que ofrece es deficiente. Por un lado, las condiciones de iluminación del gabinete difieren totalmente a las utilizadas en otras técnicas. Por otro, el estímulo de fijación (linterna puntual) es no acomodativo. Por tanto, no se tiene un correcto control de la acomodación.

Otro problema que suele tener cualquier técnica que emplea la varilla de Maddox es la distinta localización espacial que presentan la luz y la línea inducida por la varilla, sobre todo si se utiliza la varilla roja.

No conviene olvidar que las técnicas en las que se utiliza la varilla de Maddox se realizan en condiciones de biocularidad mientras que en el cover test tenemos una disociación mucho mayor ya que en ningún momento se permite ni biocularidad ni binocularidad. Esto puede implicar que mientras se realiza el cover test con cualquiera de sus variantes, anulamos por completo la acción de la vergencia fusional y el sujeto adopta la posición fisiológica de reposo mientras que con el Maddox, al tener una disociación menor, la acción de la vergencia fusional no desaparece por completo lo que nos conduciría a valores menos exofóricos / más endofóricos.
Voliendo a la comparación entre los valores en posición primaria de mirada y posición inferior podemos hacer los siguientes comentarios:

-Para justificar el hecho de que en posición inferior se obtengan con el cover test tradicional valores marginalmente significativos hacia un valor fórico menos exo / más endo deberíamos realizar un estudio con otras pruebas similar al que se ha desarrollado en este trabajo. Se haría necesario realizar una comparativa entre los resultados obtenidos para pruebas referentes al sistema acomodativo (CCD, CCF, MEM, Nott, ARP, ARN...), al sistema vergencial (VFN y VFP) y otros en posición primaria y posición inferior para poder evaluar el sistema visual globalmente y obtener conclusiones que justifiquen este cambio.

Es intuitivo pensar que el valor fórico pueda cambiar al variar otros valores como los anteriormente citados ya que el sistema visual está formado por la interacción de varios subsistemas.

-Otro factor que hay que contemplar es la posibilidad de que esta diferencia se deba a la orientación y situación de las inserciones musculares en el globo ocular. Debería realizarse un estudio minucioso de la musculatura extrínseca valorando la localización de las inserciones musculares en el globo ocular y su orientación. Sabemos que la distribución de la musculatura extrínseca sobre el globo no es simétrica sino que se dispone de tal manera que conforma un complejo sistema de pares de fuerzas combinados a lo largo de los tres ejes de rotación. Es posible que la acción de los músculos encargados de la depresión ocular conlleve un valor fórico menos exo / más endo que en posición primaria y posición superior ya que en este caso, actúan otros músculos.
7. Conclusión
Queda claro que no debemos extrapololar los valores obtenidos en posición primaria de mirada a la posición inferior cuando se utiliza una fuerte disociación como es el caso del cover test tradicional.

El cover test tradicional sigue siendo un test importantísimo en la evaluación de la desviación ocular y su cuantificación.
Es un método sencillo de realizar y de entender por parte del paciente ya que no requiere una gran colaboración por su parte. Únicamente se requiere que fije en un optotipo y trate de verlo nítido. De este modo, tenemos un buen control acomodativo.

Una vez realizado este estudio, se ha acotado el mismo siendo interesante que se realizara otra “vuelta” al proceso científico en lo que Martínez et al. han llamado proceso iterativo de la ciencia.

Además de estudiar la medida de la foria en posición inferior de mirada correspondiente a la visión próxima, se deberían estudiar también en esta posición otras pruebas como los rangos de vergencias fusionales, el sistema acomodativo y resto de pruebas de los 21 puntos (sobre todo las que abarcan la visión próxima o tienen relación con ella).

La justificación es clara: un valor correspondiente a una prueba no es sino un dato más acerca del sistema visual en estudio.
No se puede entender un valor fórico sin tener presente otros resultados porque dar un diagnóstico sin más argumentos que el valor obtenido en una sola prueba no parece una práctica coherente.
Sería recomendable disponer de unas normas revisadas y adecuadas para cada test ya que actualmente se utilizan valores basados en estudios antiguos y referidos a un solo test.

Se insta a un estudio detallado de los valores de disparidad de fijación con sus normas correspondientes para disponer de un dato más y quizá mejor del comportamiento del sistema visual en visión próxima.

Por todo ello, se invita al resto de compañeros optometristas a continuar esta línea de investigación para obtener conclusiones más concluyentes y ofrecer un mejor servicio a todo aquel que nos requiera.
8. Anexos
COVER TEST TRADICIONAL

<table>
<thead>
<tr>
<th>PAC.</th>
<th>POSICIÓN PRIMARIA DE MIRADA</th>
<th>POSICIÓN INFERIOR DE MIRADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td>8</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>13</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>23</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>25</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>29</td>
<td>-8</td>
<td>-6</td>
</tr>
<tr>
<td>30</td>
<td>-4</td>
<td>-4</td>
</tr>
</tbody>
</table>

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.
COVER TEST MODIFICADO

<table>
<thead>
<tr>
<th>PAC.</th>
<th>POSICIÓN PRIMARIA DE MIRADA</th>
<th>POSICIÓN INFERIOR DE MIRADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-3.5</td>
<td>-3</td>
</tr>
<tr>
<td>7</td>
<td>-9</td>
<td>-6</td>
</tr>
<tr>
<td>8</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>-4</td>
<td>-5.5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>13</td>
<td>-1.5</td>
<td>-2</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>-6</td>
<td>-5</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>-1.5</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>20</td>
<td>-3.5</td>
<td>-5</td>
</tr>
<tr>
<td>21</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>23</td>
<td>-3.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>24</td>
<td>-2.5</td>
<td>-5</td>
</tr>
<tr>
<td>25</td>
<td>-2.5</td>
<td>-2.5</td>
</tr>
<tr>
<td>26</td>
<td>-1.5</td>
<td>-4</td>
</tr>
<tr>
<td>27</td>
<td>-1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>28</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>29</td>
<td>-8</td>
<td>-6</td>
</tr>
<tr>
<td>30</td>
<td>-4</td>
<td>-4</td>
</tr>
</tbody>
</table>

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.
MADDOX CON PRISMAS

<table>
<thead>
<tr>
<th>PAC.</th>
<th>POSICIÓN PRIMARIA DE MIRADA</th>
<th>POSICIÓN INFERIOR DE MIRADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>7</td>
<td>-6</td>
<td>-2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>9</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>11</td>
<td>-7</td>
<td>-4</td>
</tr>
<tr>
<td>12</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>-4</td>
<td>-0.5</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>-1.5</td>
</tr>
<tr>
<td>28</td>
<td>-6</td>
<td>-2</td>
</tr>
<tr>
<td>29</td>
<td>-7</td>
<td>-4</td>
</tr>
<tr>
<td>30</td>
<td>-4</td>
<td>-2</td>
</tr>
</tbody>
</table>

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.
MADDOX CON TARJETAS

<table>
<thead>
<tr>
<th>PAC.</th>
<th>POSICIÓN PRIMARIA DE MIRADA</th>
<th>POSICIÓN INFERIOR DE MIRADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>13</td>
<td>-2</td>
<td>-5</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>24</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>28</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>29</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>30</td>
<td>-3.5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.
FORÓPTERO

<table>
<thead>
<tr>
<th>PAC.</th>
<th>POSICION PRIMARIA DE MIRADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>-5</td>
</tr>
<tr>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>-6</td>
</tr>
<tr>
<td>8</td>
<td>-6</td>
</tr>
<tr>
<td>9</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>-4</td>
</tr>
<tr>
<td>11</td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>-9</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>-4</td>
</tr>
<tr>
<td>18</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>-8</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>-3</td>
</tr>
<tr>
<td>23</td>
<td>-3</td>
</tr>
<tr>
<td>24</td>
<td>-3</td>
</tr>
<tr>
<td>25</td>
<td>-3</td>
</tr>
<tr>
<td>26</td>
<td>-7</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>-6</td>
</tr>
<tr>
<td>29</td>
<td>-7</td>
</tr>
<tr>
<td>30</td>
<td>-5</td>
</tr>
</tbody>
</table>

-Valores negativos corresponden a exodesviaciones.
-El valor 0 corresponde a ortoforia.
-Valores positivos corresponden a endodesviaciones.
POSICIÓN PRIMARIA DE MIRADA

<table>
<thead>
<tr>
<th>PAC.</th>
<th>COVER TEST TRAD.</th>
<th>COVER TEST MODIF.</th>
<th>MADDOX CON PRISMAS</th>
<th>MADDOX CON TARJETA</th>
<th>FORÓPTERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>-5</td>
<td>-1</td>
<td>-2</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>-4</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>-2</td>
<td>-3.5</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>-6</td>
<td>-9</td>
<td>-6</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>8</td>
<td>-6</td>
<td>-6</td>
<td>0</td>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>9</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>11</td>
<td>-6</td>
<td>-6</td>
<td>-7</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>-2</td>
<td>-1.5</td>
<td>-4</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>-6</td>
<td>-6</td>
<td>-5</td>
<td>-2</td>
<td>-9</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-4</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>-2</td>
<td>-3.5</td>
<td>-2</td>
<td>-2</td>
<td>-8</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>-4</td>
<td>-4</td>
<td>1</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>23</td>
<td>-2</td>
<td>-3.5</td>
<td>-4</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>24</td>
<td>-2</td>
<td>-2.5</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>25</td>
<td>-2</td>
<td>-2.5</td>
<td>0</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>-1.5</td>
<td>-2</td>
<td>-1</td>
<td>-7</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>-1.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>29</td>
<td>-8</td>
<td>-8</td>
<td>-7</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>30</td>
<td>-3</td>
<td>-4</td>
<td>-4</td>
<td>-3.5</td>
<td>-5</td>
</tr>
</tbody>
</table>

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.
POSICIÓN INFERIOR DE MIRADA

<table>
<thead>
<tr>
<th>PAC.</th>
<th>COVER TEST TRAD.</th>
<th>COVER TEST MODIF.</th>
<th>MADDOX CON PRISMAS</th>
<th>MADDOX CON TARJETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>-5</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>-4</td>
<td>-6</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-1</td>
<td>-2,5</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>-2</td>
<td>-5,5</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>-4</td>
<td>-5</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>-1,5</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>-2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>-4</td>
<td>-5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>-0,5</td>
<td>-0,5</td>
<td>-1</td>
</tr>
<tr>
<td>24</td>
<td>-4</td>
<td>-5</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>25</td>
<td>-2</td>
<td>-2,5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>-4</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>-1,5</td>
<td>-1,5</td>
<td>-1</td>
</tr>
<tr>
<td>28</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>29</td>
<td>-6</td>
<td>-6</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>30</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
</tr>
</tbody>
</table>

- Valores negativos corresponden a exodesviaciones.
- El valor 0 corresponde a ortoforia.
- Valores positivos corresponden a endodesviaciones.
9. Bibliografía

• Romero, J.; García, J.A; García, A.; Curso Introductorio a la Óptica Fisiológica. Ed. Comares